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DIELS-ALDER REACTIONS: RATE ACCELERATION PROMOTED BY A BIPHENYLENEDIOL
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Abstract: The presence of biphenylenediol 8 accelerates the rate of some Diels-Alder reactions. Catalysis via a complex
involving two hydrogen bonds (see 6) is proposed.

The development of catalysts for the asymmetric induction of Diels-Alder reactions is a subject of considerable
current interest. To date, attention has focused almost exclusively on devising substances which function as chiral Lewis
acids, but no general solutions have yet emerged.!

A putative alternate strategy for promoting asymmetric Diels-Alder reactions involves the use of hydrogen bonding
to position (and activate) the dienophile within a chiral environment. The ability of hydrogen-bond-donating solvents to
accelerate the rate of Diels-Alder reactions was recognized several decades ago,2 but the possibility of using hydrogen
bonding to control the outcome of Diels-Alder reactions has gone largely unexamined.34.5

In 1984, Hine and colleaguesS reported that biphenylenediol 1 forms doubly hydrogen-bonded complexes with
oxygen-bearing partners such as pyrone 2 (—3). In 1987, the more acidic dinitrobiphenylenediol 4 was shown to
exceed 1 as a hydrogen bond donor.”8 X-Ray crystallographic studiest® have established that the pyrone ring in
complex 3 is essentially coplanar®:10 with the biphenylenediol ring system, and that the two hydrogen bonding protons of
1 are positioned at the "ends" of the two sp2 lone pairs projecting from the carbonyl oxygen of the pyrone.
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Extension of the concept underlying 3 suggested that if 1 - or better, 4 - were to temporarily bind (and thereby
transiently activate) Diels-Alder dienophiles such as a,8-unsaturated aldehydes and ketones in a manner (see 5)
comparable to 3, then incorporation of a 4-like unit into an asymmetric environment might provide an effective chiral
catalyst for Diels-Alder reactions. The bidentate nature of the binding of 1/4 is particularly attractive from a design
standpoint, since it should impose on the complex (e.g., 5) a relatively rigid geometry, thereby avoiding the confor-
mational ambiguities which attend monodentate catalysts, represented in the generic, chiral Lewis acid case by 7.

Before investing effort in the synthesis of a chiral version of 4, prudence dictated an evaluation of the ability of the
basic unit of 4 to accelerate the rate of Diels-Alder reactions. Diol 4 itself proved insufficiently soluble in inert solvents
such as CH,Cl, to be useful, but its dipropyl analog 8, prepared (Scheme) by adaptation of the Hine-Ahn synthesis3 of
4, exhibited adequate solubility.
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The effectiveness of 8 as a catalyst was assessed (\H NMR, CD,Cl, as solvent!2) by simultaneously conducting
pairs of experiments under conditions which were identical except that one of the two reaction solutions contained some
8. An estimate of the effectiveness of 8 as a catalyst is provided by comparing the extent of product formation in the
presence and absence of 8. The results are summarized in the Table. Examination of the Table indicates that 8 promotes
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SCHEME:"" Reagents: (i) CH,=CH,CH;,Br, K,CO;, acetone, A, 2 h; (ii) Double Claisen rearrangement:

N, N-dimethylaniline, 200°C, 23 h; (iii) Hy (~ 1 atm.), PtO,, EtOH, 5 min; (iv) NO;BF,, AcOH, 2.5 h;

(v) PhCH,Br, K,CO;, DME-DMF (1:0.3); (vi) Cu-bronze, DMF, A, 4 h; (vii) BBr3, CgHg, 3.5 h.
Diels-Alder reactions involving aldehydic and ketonic dienophiles (entries 1-7, 10) and exhibits turnover (several entries).
In the case of ester dienophiles (entries 8, 11), significant rate acceleration is not observed, perhaps because the preferred
s-trans conformations of esters inhibit complex formation as a consequence of repulsive interactions (see 9). Not
surprisingly, at least in one instance (entry 9) the presence in the diene of hydrogen-bond-accepting sites that are capable
of competing for 8 with the dienophile, diminishes the effect of 8.13 Control experiments20 using p-nitrophenol (pKs
7.221) and the more20 acidic (pKq 6.17) 4-nitro-3-(trifluoromethyl)phenol in place of 8 (pKq ~ 6.17.21) indicated that both
of the monoprotic controls are decidedly inferior to 8 as catalysts.19:20

The results in the Table, both positive and negative, are consistent with the intervention of hydrogen-bonded

complexes such as 6, and with the ability of such complexes to accelerate the rate of the Diels-Alder reaction. While those
results do not require involvement of 6-type complexes, they certainly encourage further study of the potential utility of
hydrogen bonding in controlling the outcome of Diels-Alder reactions.



Table. Catalysis of Diels-Alder Reactions by

Entry Diene® Dienophile Temp/°C Time in absence of 8
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(a)In excess'>, (b) With respect to dienophile. (c) Major isomer given. (d) Addmoml diene was added at ~24 h intervals, because
of competing diene dimerization. (¢) Some catalyst decomposition was observed. (f) Some exira aldehyde proton resonance signals
were observed in the NMR spectra which could not be attributed to either the Diels-Alder product or the dienophile.
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